Deep learning applications in MRI

Professor of the course:

Name + Family:

Dr. Moty Freiman

Contact Details:

Email: moti.freiman@technion.ac.il
Location: Silver 239
Working hours: Sundays, 16:30-17:30

Teaching assistants (if any):

Name + Family:

ssamahkh@campus.technion.ac.il
Location: Silver 239
Working hours: Tuesdays, 12:30-13:30

Please schedule reception hour meetings by email. To facilitate communication, email subject must be: deep-mri: <your subject> where <your subject> is the topic you would like to discuss with us.

The lecture recordings will be available on the course website.

Credit System:

Credit course 2 credits
Grading模式: Hebrew / English at the discretion of the instructor

Requirements:

1. 336027 Understanding Medical Image Analysis or 046200 12060, 3 credits, Medical Image Analysis 2023
2. 336546 Deep Learning in Medical Imaging or 046195 12060, 3 credits, Medical Image Analysis 2023
3. 336520 Deep Learning for Medical Image Analysis or 046195 12060, 3 credits, Medical Image Analysis 2023

The course is taught in Hebrew / English according to the instructor's discretion.
Textbook:

There is no specific textbook for the course. A list of papers covering course topics to read and discuss as part of the course duties will be provided and the beginning of the course.

Course Objectives

1. To introduce the main concepts of deep-learning algorithms
2. To introduce the main challenges in the domain of clinical Magnetic Resonance Imaging (MRI)
3. To understand how to solve clinical MRI challenges with deep-learning algorithms including:
 a. Segmentation
 b. Registration
 c. Reconstruction/Restoration
 d. Disease prediction
 e. Quantitative MRI analysis
4. To be familiar with up-to-date literature in deep-learning for MRI
5. To gain hands-on experience in developing deep-learning algorithms for MRI using the python programming language and PyTorch or tensor-flow2.0 as the deep-learning software libraries.

Learning outcomes:

At the end of the course, students will know:

1. How to formulate a challenge in MRI processing pipeline by a neural network.
2. How to implement a deep-neural-network to solve a given challenge such as:
 a. Segmentation
 b. Registration
 c. Reconstruction/Restoration
 d. Disease prediction
 e. Quantitative MRI analysis (specifically, Diffusion-Weighted MRI)
3. How to train and evaluate a deep-neural network.

Course Topics

The course will cover the following topics:

A theoretical and practical introduction to the fields of deep-learning, clinical MRI, and the applications of deep-learning for MRI. Specifically, we will discuss the perceptron, logistic regression, back-propagation, activation functions, hyper-parameters, convolutional neural networks, auto-encoders, regularization, residual-networks, generative adversarial networks, weakly and unsupervised deep-learning. In addition, we will discuss MRI-related applications, such as segmentation, image restoration,
image reconstruction, sparse sampling, image synthesis, quantitative MRI, MRI super-resolution, MR fingerprinting, image registration.

Assignments & Readings

1. Each student is expected to get prepared for the class by reading at least one paper from the list related to the class topic.
2. Each pair of students is expected to present a selected topic during the class based on several papers provided for the selected topic.
3. Each pair is expected to implement a deep-learning algorithm for a specific MRI problem.
4. At least 90% attendance on course lectures unless justified reason with lecturer permission.

Course grade: 50% presentation + 50% project.

Online resources

1. Course website on the Technion’s moodle: https://moodle2223.technion.ac.il/course/view.php?id=3184 all lecture notes/supplementary material/slides are available there.

MRI fundamentals:

1. Albert Einstein college of medicine course in MRI: https://www.youtube.com/watch?v=35gfOtjReic
2. Stanford radiology course of MRI: https://www.youtube.com/channel/UCJgAoFeFMKQ-f1XVPfBslQ/videos
3. https://www.coursera.org/learn/mri-fundamentals#syllabus
7. https://www.weizmann.ac.il/chemphys/assaf_tal/lecture-notes (very detailed and comprehensive, only for thus who interested in a depth understanding of MRI)

Intro to deep-learning (theory):

1. http://introtodeeplearning.com/ (lectures 1, 3)
2. http://cs231n.stanford.edu/
3. https://www.coursera.org/specializations/deep-learning?

Intro to deep-learning (programming)

1. PyTorch: https://pytorch.org/tutorials/
2. Tensorflow: https://www.tensorflow.org/tutorials
More specifically within it:

<table>
<thead>
<tr>
<th>תאריך</th>
<th>писание</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/5/2023</td>
<td>יום השבת. אין לימודים</td>
</tr>
<tr>
<td>19/5/2023</td>
<td>יום ראשון. אין לקייםMocks</td>
</tr>
<tr>
<td>21/5/2023</td>
<td>יום שני. אין לקייםMocks</td>
</tr>
<tr>
<td>25/5/2023-26/5/2023</td>
<td>פורים. אין לקייםMocks</td>
</tr>
<tr>
<td>28/6/2023</td>
<td>יום ראשון. אין לקייםMocks</td>
</tr>
<tr>
<td>29/6/2023-30/6/2023</td>
<td>ראש השנה ולימודים. אין לקייםMocks</td>
</tr>
<tr>
<td>2/7/2023-6/7/2023</td>
<td>יום שני. אין לקייםMocks</td>
</tr>
<tr>
<td>6/7/2023</td>
<td>יום שלישי. אין לקייםMocks</td>
</tr>
<tr>
<td>10/7/2023-3/8/2023</td>
<td>חג מולד. אין לקייםMocks</td>
</tr>
<tr>
<td>6/8/2023</td>
<td>יום שני. אין לקייםMocks</td>
</tr>
</tbody>
</table>

תקופת בחינות מועד א

6/8/2023: פתיחת סמסטר קיץ תשפ"ג

10/7/2023-3/8/2023: התקופה בוחנת מוצד א"ב

6/8/2023: סיום סמסטר קיץ תשפ"ג